【わかりやすく】集合の要素の個数を求める①(高校数学A/場合の数) - 質問解決D.B.(データベース)

【わかりやすく】集合の要素の個数を求める①(高校数学A/場合の数)

問題文全文(内容文):
全体集合$U$の部分集合$A,B$において、
$n(U)=100,$ $n(A)=34,$ $n(B)=40,$ $n(A \cap B)=15$であるとき、次の個数を求めよ。
(1)$n(\bar{ A })$

(2)$n(\bar{ B })$

(3)$n(\bar{ A \cap B })$
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
全体集合$U$の部分集合$A,B$において、
$n(U)=100,$ $n(A)=34,$ $n(B)=40,$ $n(A \cap B)=15$であるとき、次の個数を求めよ。
(1)$n(\bar{ A })$

(2)$n(\bar{ B })$

(3)$n(\bar{ A \cap B })$
投稿日:2022.04.26

<関連動画>

一定であることの証明 慶應志木

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
PD+PE=一定であることを証明せよ。
*図は動画内参照

慶應義塾志木高等学校
この動画を見る 

東大 三角比と漸化式

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.

(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)

1994東大過去問
この動画を見る 

気付けば一瞬だが、意外と難しいのよ。因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4-7x^2+9$
この動画を見る 

一次不等式の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
不等式$2x-3 \gt x+1$について、次の問いに答えよ。
 (1)不等式の解が$x \gt 2$となるように、定数$a$の値を求めよ。
 (2)不等式の解が$x=5$を含むように、定数$a$の範囲を求めよ。

$a$を定数とする。2つの不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x-4)-1 \gt -3(2x+11) ・・・① \\
4x+2a \lt 3x+2 ・・・②
\end{array}
\right.
\end{eqnarray}$
をともに満たす整数$x$がちょうど3個となるような$a$の値の範囲を求めよ。
この動画を見る 

【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。

(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$

(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$

次の計算をせよ。

(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$

次の計算をせよ。

(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$

(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$

(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
この動画を見る 
PAGE TOP