大学入試問題#869「次数は分子の方が高いのね」 #玉川大学(2022) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#869「次数は分子の方が高いのね」 #玉川大学(2022) #整数問題

問題文全文(内容文):
$\displaystyle \frac{12n^2+13n+51}{3n+1}$が整数となるような整数$n$をすべて求めよ。

出典:2022年玉川大学 入試問題
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
問題文全文(内容文):
$\displaystyle \frac{12n^2+13n+51}{3n+1}$が整数となるような整数$n$をすべて求めよ。

出典:2022年玉川大学 入試問題
投稿日:2024.09.28

<関連動画>

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

ナイスな整数問題 富山大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
この動画を見る 

見掛け倒しの対数方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\log_{\log_6(x-3)}81=4$
この動画を見る 

分母払うときは要注意

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^3}{x+x+x} = 12$
$x=?$
この動画を見る 

思わぬ落とし穴 方程式を解け 拓殖大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式
$\frac{x}{x+1} + \frac{3x-1}{x^2-2x-3}=3$を解け

拓殖大学
この動画を見る 
PAGE TOP