数と式 集合の考え方【いつものシミズ君がていねいに解説】 - 質問解決D.B.(データベース)

数と式 集合の考え方【いつものシミズ君がていねいに解説】

問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。$U$の部分集合A、Bについて
$A∩B={2}$ $A$(補集合)$∩B={4,6,8}$ $A$(補集合)$∩B$(補集合)$={1.9}$
であるとき、次の$∩$を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩B$(補集合)

$U={x|1≦x≦10、xは整数}$を全体集合とする。$U$の部分集合
$A={1,2,3,4,8},B={3,4,5,6},C{2,3,6,7}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩C$(補集合)
(4)$A$(補集合)$∩B∩C$(補集合)
(5)$(A∩B∩C)$(補集合)
(6)$(A∪C)∩B$(補集合)

$A={1、3、3a-2}$, $B={-5、a+2、a^2-2a+1}$,$A∩B={1、4}$のとき
定数aの値と和集合$A∪B$を求めよ。
チャプター:

00:00~03:23 【1】
03:28~09:44 【2】
09:49~11:40 【3】

単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。$U$の部分集合A、Bについて
$A∩B={2}$ $A$(補集合)$∩B={4,6,8}$ $A$(補集合)$∩B$(補集合)$={1.9}$
であるとき、次の$∩$を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩B$(補集合)

$U={x|1≦x≦10、xは整数}$を全体集合とする。$U$の部分集合
$A={1,2,3,4,8},B={3,4,5,6},C{2,3,6,7}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩C$(補集合)
(4)$A$(補集合)$∩B∩C$(補集合)
(5)$(A∩B∩C)$(補集合)
(6)$(A∪C)∩B$(補集合)

$A={1、3、3a-2}$, $B={-5、a+2、a^2-2a+1}$,$A∩B={1、4}$のとき
定数aの値と和集合$A∪B$を求めよ。
投稿日:2023.05.10

<関連動画>

論理と集合「集合の記号」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$

⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
この動画を見る 

米国選抜数学試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1990米国選抜数学試験
a,b,x,yは実数
$ax+by=3$
$ax^2+by^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
$ax^5+by^5=?$
この動画を見る 

大阪大 絶対値のついた二次関数と直線の面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
この動画を見る 

【中学からの!】三角比の計算(1):特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sin\theta+\cos\theta=\dfrac{1}{2}$のとき,$\sin\theta\cos\theta$の値を求めよ.

この動画を見る 

ルートを含む二次方程式の計算 2024早稲田本庄最初の一問

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + \sqrt 3 )x^2+2 \sqrt 3x - \sqrt 5+ \sqrt 3= 0$を解け
2024早稲田大学 本庄高等学院
この動画を見る 
PAGE TOP