何乗しても実数にならない数 - 質問解決D.B.(データベース)

何乗しても実数にならない数

問題文全文(内容文):
nを自然数とする.
$(1+2i)^n$は虚数であることを示せ.
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$(1+2i)^n$は虚数であることを示せ.
投稿日:2022.07.06

<関連動画>

これから数Ⅲを学ぶ人に贈る。複素数って何だよ?iって何?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
複素数についての解説動画です
この動画を見る 

日本大(医学部)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt3 i$
$\dfrac{(2+\alpha)^6}{\alpha^3}$の値を求めよ.

日本(医)過去問
この動画を見る 

複素数 学習院大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$は複素数であり,$\dfrac{z-1-3i}{z-2}$が純虚数である.
$\vert z \vert$の最大値と最小値を求めよ.

学習院大過去問
この動画を見る 

2021慶應義塾大(理工) 式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^2+3\alpha+3=0$のとき,$(\alpha+1)^2(\alpha+2)^5=\Box$
$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組をすべて求めよ.

2021慶應(理)
この動画を見る 

【高校数学】数Ⅲ-8 複素数の積と商②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\alpha=1-i,\beta=\sqrt3+i$とする.
ただし,偏角は$0\leqq \theta \lt 2\pi$とする.

①$\alpha\beta,\dfrac{\alpha}{\beta}$をそれぞれ極形式で表そう.
②$arg\beta^4, \left\vert\dfrac{\alpha^2}{\beta^2}\right \vert$をそれぞれ求めよう.
この動画を見る 
PAGE TOP