整数問題 明治大 - 質問解決D.B.(データベース)

整数問題 明治大

問題文全文(内容文):
明治大学 過去問

nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学 過去問

nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
投稿日:2023.06.21

<関連動画>

整数問題 分数式

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
この動画を見る 

高校への数学執筆者 秋田洋和先生が解説!!(岡山県)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
この動画を見る 

整数問題 愛知高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1から9までの自然数から異なる2つを選びa,bとする。(a<b)
$\frac{1}{a} - \frac{1}{b}$の値が最も小さくなるa,bを求めよ。

愛知高等学校
この動画を見る 

山梨大(医)整数問題 解説:ヨビノリたくみ Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の整数
$log_{a}b$が有理数ならば、自然数$m,n$と2以上の整数が存在して、$a=c^m,b=c^n$と表せることを示せ

出典:山梨大学 過去問
この動画を見る 

福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る 
PAGE TOP