福田の1.5倍速演習〜合格する重要問題034〜東京大学2017年度文系第2問〜点の存在範囲 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題034〜東京大学2017年度文系第2問〜点の存在範囲

問題文全文(内容文):
1辺の長さが1の正六角形ABCDEFが与えられている。点Pが辺AB上を、
点Qが辺CD上をそれぞれ独立に動くとき、線分PQを2:1に内分する点Rが
通りうる範囲の面積を求めよ。

2017東京大学文系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1辺の長さが1の正六角形ABCDEFが与えられている。点Pが辺AB上を、
点Qが辺CD上をそれぞれ独立に動くとき、線分PQを2:1に内分する点Rが
通りうる範囲の面積を求めよ。

2017東京大学文系過去問
投稿日:2022.12.19

<関連動画>

【数B】ベクトル:直線と平面の交点

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直線$\dfrac{x-2}{4}=\dfrac{y-1}{-1}=z-3$と平面$x-4y+z=0$の交点を求めよ
この動画を見る 

【数C】【ベクトルの内積】a・b= b・c=c・a=-2,a+b+c=0とする。(1) a , b , c の大きさを求めよ。(2) a と b のなす角θを求めよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 

【数学B/平面ベクトル】ベクトル方程式の総まとめ

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
点$A(2,4),\vec{ d }=(1,3)$のとき、点$A$を通り、$\vec{ d }$が方向ベクトルである直線の媒介変数表示を、媒介変数を$t$として求めよ。
また、$t$を消去した式で表せ。


(2)
2点$A(-1,2),$ $B(3,5)$を通る直線の媒介変数表示を、媒介変数を$t$として求めよ。


(3)
点$A(-1,2),\vec{ n }=(3,4)$のとき、点$A$を通り、$\vec{ n }$が法線ベクトルである直線の方程式を求めよ。


(4)
点$A(1,2)$を中心とし、半径が$3$である円の方程式を、ベクトルを利用して求めよ。
この動画を見る 

【数C】平面ベクトル:チェバメネの利用 △OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
チェバメネラウスを使った解法版
この動画を見る 
PAGE TOP