福田の1.5倍速演習〜合格する重要問題034〜東京大学2017年度文系第2問〜点の存在範囲 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題034〜東京大学2017年度文系第2問〜点の存在範囲

問題文全文(内容文):
1辺の長さが1の正六角形ABCDEFが与えられている。点Pが辺AB上を、
点Qが辺CD上をそれぞれ独立に動くとき、線分PQを2:1に内分する点Rが
通りうる範囲の面積を求めよ。

2017東京大学文系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1辺の長さが1の正六角形ABCDEFが与えられている。点Pが辺AB上を、
点Qが辺CD上をそれぞれ独立に動くとき、線分PQを2:1に内分する点Rが
通りうる範囲の面積を求めよ。

2017東京大学文系過去問
投稿日:2022.12.19

<関連動画>

福田の数学〜東京工業大学2023年理系第5問(PART1)〜4直線に接する球面の決定

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#点と直線#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
5 xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ABC(それぞれの位置ベクトルをabcとする)。
この時、次の問いに答えよ。
(1)点Aから辺BCに下した垂線のベクトル方程式を求めよ。
※(2)は②の動画で説明
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、OA, OC, ODのどの
2つのなす角もπ3であるとする。
(1)OFOA, OC, ODを用いて表すと、
OF=である。
(2)|OF|, cosAOFを求めると|OF|=,
 cosAOF=である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積はである。
(4)対角線OF上に点Pをとり、|OP|=tとおく。点Pを通り、OFに垂直な平面
をHとする。平行六面体OABCDEFGを平面Hで切った時の断面が六角形
となるようなtの範囲はである。このとき、平面Hと辺AEの交点をQ
として、|AQ|をtの式で表すと|AQ|=である。
また、|PQ|2tの式で表すと
|PQ|2=|OQ|2|OP|2=
である。
(5)平行六面体OABCDEFGを、直線OFの周りに1回転してできる回転体
の体積はである。

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
2 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)OPOA, OBを用いて表せ。また、|OP|の値を求めよ。
(2)OQOA, OBを用いて表せ。また、|OQ|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その2

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)s+2t=3
(2)1s+t2,s0,t0
この動画を見る 
PAGE TOP preload imagepreload image