【数学】中高一貫校問題集 数学3 数式・関数編 111 実数解が存在することの証明 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集 数学3 数式・関数編 111 実数解が存在することの証明

問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。

(1)$b=\frac{a}{2}+2c$

(2)$a+c=0$

(3)aとcが異符号
チャプター:

0:00 オープニング
0:05 問題
0:10 (1)の解説
1:33 (2)の解説
2:42 (3)の解説

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。

(1)$b=\frac{a}{2}+2c$

(2)$a+c=0$

(3)aとcが異符号
投稿日:2024.02.09

<関連動画>

岩手大 3次方程式の解 共役の複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$

(1)
$a,b$と他の2解を求めよ。

(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?

出典:2006年岩手大学 過去問
この動画を見る 

藤田医科大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$
$12x^{2026}+23x^{2025}+34x^{2024}+45x^{2023}+$
$56x^{2022}+67^{2021}$の値を求めよ.

2021藤田医科大過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 自然数a,bに対し、3次関数f_{a,b}(x),g_{a,b}(x)を\hspace{150pt}\\
f_{a,b}(x)=x^3+3ax^2+3bx+8\\
g_{a,b}(x)=8x^3+3bx^2+3ax+1\\
で定める。次の問いに答えよ。\\
(1)次の条件(\textrm{I})(\textrm{II})の両方を満たす自然数の組(a,b)\\
でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{I})f_{a,b}(x)が極値をもつ\\
(\textrm{II})g_{a,b}(x)が極値をもつ\\
(2)3次方程式f_{a,b}(x)=0の3つの解が\alpha,\beta,\gammaであるとき\\
3次方程式g_{a,b}(x)=0の解を\alpha,\beta,\gammaで表せ。\\
(3)次の条件(\textrm{III})を満たす自然数の組(a,b)でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{III})3次方程式f_{a,b}(x)=0が相異なる3つの実数解をもつ。
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:お茶の水女子大学 過去問訂正版
この動画を見る 

連立二元4次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP