大学入試問題#709「ちょっと大変」 東京理科大学(2012)整数問題 - 質問解決D.B.(データベース)

大学入試問題#709「ちょっと大変」 東京理科大学(2012)整数問題

問題文全文(内容文):
$k,l,m,n$は自然数とする。
条件$k・l・m・n=k+l+m+n,$
$k \leq l \leq m \leq n$を満たす組$(k,l,m,n)$をすべて求めよ

出典:2012年東京理科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k,l,m,n$は自然数とする。
条件$k・l・m・n=k+l+m+n,$
$k \leq l \leq m \leq n$を満たす組$(k,l,m,n)$をすべて求めよ

出典:2012年東京理科大学 入試問題
投稿日:2024.01.19

<関連動画>

福田の数学〜青山学院大学2025理工学部第2問〜虚数係数の2次方程式の解と正方形の頂点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$i$を虚数単位とする。

複素数$z$についての方程式

$z^2-4iz=4\sqrt3 i \ \cdots (*)$

の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、

$\alpha,\beta$が表す複素数平面上の点を

それぞれ$A,B$とする。

(1)方程式$(*)$は

$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$

と表せるので

$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。

(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。

また、線分$AB$を対角線とする正方形の

残りの$2$頂点を表す複素数は

$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と

$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

大学入試問題#59 京都大学(2007) 積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2}\displaystyle \frac{2x+1}{\sqrt{ x^2+4 }}\ dx$を計算せよ。

出典:2007年京都大学 入試問題
この動画を見る 

山形大(医)確率 等比数列の和 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
箱に白玉が3個、赤玉が2個。1個とり出し、白なら戻す。赤なら戻さない。
2個目の赤が出たら終了。n回目に終わる確率を求めよ。
この動画を見る 

大学入試問題#601「これは落としたくないかも」 広島大学後期(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x\ log\ x$のとき
$(\displaystyle \frac{1}{e} \leqq x \leqq )$
$\displaystyle \int_{0}^{e} f^{-1}(x) dx$を求めよ

出典:2014年広島大学後期 入試問題
この動画を見る 

大学入試問題#565「これは落とせない」 京都帝国大学(1935) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$

出典:1935年京都帝国大学 入試問題
この動画を見る 
PAGE TOP