整数問題 3乗になる数!! 新潟明訓 - 質問解決D.B.(データベース)

整数問題 3乗になる数!!  新潟明訓

問題文全文(内容文):
1872 - 36nがある正の整数の3乗で表されるような正の整数nをすべて求めよ

新潟明訓高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1872 - 36nがある正の整数の3乗で表されるような正の整数nをすべて求めよ

新潟明訓高等学校
投稿日:2022.07.30

<関連動画>

共通1次試験 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
共通一次試験
m,k自然数 求めよ
$2+\frac{1}{k+\frac{1}{m+\frac{1}{5}}}=\frac{803}{371}$
この動画を見る 

連続k個の自然数の積はk!の倍数&整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ

連続$k$個の自然数の積は$k!$の倍数である
この動画を見る 

福田のおもしろ数学330〜三角形の成立条件と条件を満たす三角形の個数

アイキャッチ画像
単元: #数A#図形の性質#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
この動画を見る 

5/17の動画に対する質問への返答

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^4+x^2+1)^{101}$と$x^3-1$で割った余りを求めよ.
この動画を見る 

【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
この動画を見る 
PAGE TOP