福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明

問題文全文(内容文):

$\boxed{1}$

平面上の三角形$OAB$を考える。

$\angle AOB$は鋭角、$OA=3,OB=t$とする。

また、点$A$から直線$OB$に下ろした垂線と

直線$OB$の交点を$C$とし、$OC=1$とする。

線分$AB$を$2:1$に内分する点を$P$、点$A$から

直線$OP$に下ろした垂線と直線$OB$との交点を

$R$とする。

(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。

(2)線分$OR$の長さを$t$を用いて表せ。

(3)線分$OB$の中点を$M$とする。

点$R$が線分$MB$上にあるとき、

$t$のとりうる値の範囲を求めよ。

$2025$年大阪大学理系過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

平面上の三角形$OAB$を考える。

$\angle AOB$は鋭角、$OA=3,OB=t$とする。

また、点$A$から直線$OB$に下ろした垂線と

直線$OB$の交点を$C$とし、$OC=1$とする。

線分$AB$を$2:1$に内分する点を$P$、点$A$から

直線$OP$に下ろした垂線と直線$OB$との交点を

$R$とする。

(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。

(2)線分$OR$の長さを$t$を用いて表せ。

(3)線分$OB$の中点を$M$とする。

点$R$が線分$MB$上にあるとき、

$t$のとりうる値の範囲を求めよ。

$2025$年大阪大学理系過去問題
投稿日:2025.06.11

<関連動画>

【数C】ベクトルの基本⑤内積の基本計算1 始点を揃えて考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る 

【高校数学】 数B-17 ベクトルの内積⑥

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=1$で、$\vec{ a }$と$\vec{ b }$のなす角が120°であるとき、$3\vec{ a }-2\vec{ b }$の大きさを求めよう。

②$| \vec{ a } |=5,| \vec{ b } |=3,| \vec{ a } - 2\vec{ b } |=9、3\vec{ a }-2\vec{ b }$のなす角を$\theta$とするとき、$\cos \theta$の値を求めよう。
この動画を見る 

【数B】ベクトル:一次独立なベクトルで他のベクトルを扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題618
$\vec{a}=(2,5),\vec{b}=(1,3)$がある。次のベクトルを$\vec{a}+m \vec{b}$の形で表せ。
(1)$\vec{c}=(1,0)$
この動画を見る 

【数C】ベクトルの大きさ、単位ベクトルとは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
|vec(a)|=5であるvec(a)がある。
(1) vec(a)と同じ向きの単位ベクトルを、vec(a)を用いて表せ。
(2) vec(a)と平行で、大きさが3のベクトルを、vec(a)を用いて表せ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
$\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }$
である。

2021上智大学文系過去問
この動画を見る 
PAGE TOP