整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】 - 質問解決D.B.(データベース)

整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】

問題文全文(内容文):
自然数nに対して

N=(n+2)3n(n+1)(n+2)

が36の倍数になるようなnをすべて求めよ。

札幌医科大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数nに対して

N=(n+2)3n(n+1)(n+2)

が36の倍数になるようなnをすべて求めよ。

札幌医科大過去問
投稿日:2022.10.14

<関連動画>

数学オリンピック予選 合同式の「割り算‼️

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
40C20を41で割った余りを求めよ.

数学オリンピック過去問
この動画を見る 

エレガントな解法もとむ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の性質を満たす最小の自然数Nを求めよ.
「600以下の自然数からどのN個を選んでも,その中に互いに素な2つの自然数の組が存在する。

この動画を見る 

整数問題の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数a,b,nをすべて求めよ.
2a+3b=n2
この動画を見る 

整数問題 履正社 (大阪)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
900nn+29がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
この動画を見る 

オーストラリア数学オリンピックAustralian math Olypmpiad

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
213+210+2x=y2
自然数x,yを求めよ.

オーストラリア数学オリンピック過去問
この動画を見る 
PAGE TOP preload imagepreload image