整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】 - 質問解決D.B.(データベース)

整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】

問題文全文(内容文):
自然数$n$に対して

$N=(n+2)^3-n(n+1)(n+2)$

が36の倍数になるような$n$をすべて求めよ。

札幌医科大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$n$に対して

$N=(n+2)^3-n(n+1)(n+2)$

が36の倍数になるような$n$をすべて求めよ。

札幌医科大過去問
投稿日:2022.10.14

<関連動画>

【数学オリンピックに挑戦】下3桁じゃなく上3桁!?【数学】

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6桁の平方数の上3桁として考えられるものは全部でいくつあるか。

数学オリンピック過去問
この動画を見る 

2021京都大 整数問題(理系)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n-2^n$が素数なら$n$は素数であることを示せ.

2021京都大(理)
この動画を見る 

灘中 整数問題 大学入試レベル

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=377^6$
①$A$の約数のうち14で割って余りが1
②$A$の約数のうち15で割って余りが1

①②それぞれ個数

出典:2019年灘中学校 過去問
この動画を見る 

大学入試だけど、中学生も解ける!!(東京理科大)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある2桁の正の整数mを2乗すると下2桁が36になるとき、
m=?

東京理科大学
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$2^{3^n}+1$は$3^{n+1}$で割り切れ,$3^{n+2}$では割り切れないことを示せ.
この動画を見る 
PAGE TOP