09岡山県教員採用試験(数学:1-(1) 整数問題) - 質問解決D.B.(データベース)

09岡山県教員採用試験(数学:1-(1) 整数問題)

問題文全文(内容文):
$\boxed{1}-(1)$

$n^2-2n-24$が素数となる自然数$n$を
求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(1)$

$n^2-2n-24$が素数となる自然数$n$を
求めよ.
投稿日:2021.05.18

<関連動画>

早稲田大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+1,2n^3+3,6n^2+5$
全てが素数となる自然数$n$をすべて求めよ

出典:早稲田大学 過去問
この動画を見る 

茨城大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$

(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ

(2)
積$abcd$が4の倍数となる確率を求めよ

出典:2010年茨城大学 過去問
この動画を見る 

福田の数学〜立教大学2025理学部第4問〜整式がある数の倍数であることの証明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$n$を$2$以上の自然数とする。次の問いに答えよ。

(1)$n^3-n$は$6$のばいすうであることを示せ。

(2)$n^4+2n^3-n^2-2n$は$24$の倍数であることを示せ。

(3)$n$に関する数学的帰納法を用いて、

$n^5+4n$は$5$の倍数であることを示せ。

(4)$n^9+2n^8-n^7-2n^6+4n^5+8n^4-4n^3-8n^2$は

$120$の倍数であることを示せ。

$2025$年立教大学理学部過去問題
この動画を見る 

岩手大 滋賀大 三次関数と直線 3次方程式整数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数

滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
この動画を見る 

【数A】整数の性質:○○でないの証明は背理法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pが素数のとき、$1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{p}$は整数でないことを証明しよう。
この動画を見る 
PAGE TOP