【数学A】接弦定理の覚え方と証明【このやり方なら、来週も忘れない】 - 質問解決D.B.(データベース)

【数学A】接弦定理の覚え方と証明【このやり方なら、来週も忘れない】

問題文全文(内容文):
【数学A】接弦定理の覚え方と証明紹介動画です
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】接弦定理の覚え方と証明紹介動画です
投稿日:2020.06.14

<関連動画>

2022九州大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数m,nは$ n^4=1+210m^2 $を満たす.
(1)$\dfrac{n^2+1}{2},\dfrac{n^2-1}{2}$は互いに素な整数であることを示せ.
(2)$ n^2-1 $は168の倍数であることを示せ.
(3)(m,n)を1組求めよ.

2022九州大過去問
この動画を見る 

【手と思考を止めるな…!】整数:法政大学第二高等学校~全国入試問題解法

単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2^nを19で割ったときの余りが9となる最小の自然数nを求めなさい。$
この動画を見る 

【数A】【整数の性質】座標の考え方 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向きとする座標平面を考える。また,1mを1の長さとする。
地点A,Bの座標をそれぞれ(-4,1),(3,-5)とする。
(1)地点Aから東に5m進み,南に7m進んだ位置にある点の座標を答えよ。
(2)地点Bから西に4m進み,北に1m進んだ位置にある点の座標を答えよ。

平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向き,真上の方向をz軸の正の向きとする座標空間を考える。また,1mを1の長さとする。この広場の上空に気球Pが浮かんでいる。レーザー距離計で,次のように測定した。ただし,気球Pは1つの点とみなす。
[1]地点Oから東へ15m,北へ1m進んだ地点A(15,1,0)から,Pまでの距離を測ると41m
[2]地点Oから北へ21m進んだ地点B(0,21,0)から,Pまでの距離を測ると56m
[3]地点Oから南へ11m進んだ地点C(0,-11,0)から,Pまでの距離を測ると56m
このとき,気球Pの位置を求めよ。

座標空間において,A(3,2,0),B(3,4,-2),C(1,2,-2)を頂点とする三角形は,正三角形であることを示せ。
この動画を見る 

【数A】【場合の数と確率】確率の基本5 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
5本のあたりくじの入っている20本のくじから、1本引いてもとに戻すことを5回繰り返すとき、少なくとも2回は当たりくじを引く確率を求めよ。
A,Bの2人がそれぞれ1個のさいころを4回ずつ投げる。2人とも3または6の目が3回以上出る確率を求めよ。
数直線上を動く点Pが原点の位置にある。1個のさいころを投げて1,2,3,4の目が出たらpは正の向きに2だけ進み、5,6が出たらpは負の向きに1だけ進む。さいころを4回続けて投げたとき、点pの座標pが次のようになる確率を求めよ。
1個のさいころを投げて、1または2の目が出たら50円もらえ、その他の目が出れば20円支払うゲームがある。さいころを6回投げて、もらう金額が160円になる確率を求めよ。
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問4_整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、$2^0=1$とする。
(ii)x,zは等式$ 7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、$z=5$のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、$0\leqq z\leqq 20$のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)$z=100$で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。
この動画を見る 
PAGE TOP