三次関数の基本性質 変曲点について点対称 畳8畳 - 質問解決D.B.(データベース)

三次関数の基本性質 変曲点について点対称 畳8畳

問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
投稿日:2019.08.15

<関連動画>

福田の数学〜京都大学2022年文系第4問〜線分の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを正の実数とする。直線$L:ax+by=1$と曲線$y=-\frac{1}{x}$との2つの交点
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を
Rとし、Lとy軸との交点をSとする。a,bが条件
$\frac{PQ}{RS}=\sqrt2$
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。

2022京都大学文系過去問
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 

方程式が解をもたないとき

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xの方程式ax+3=2x-aが解をもたないときa=?

仙台育英学園高等学校
この動画を見る 

弘前大 積分 面積公式導出 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90弘前大学過去問題
$C:y=x^3-(a+3)x^2+3ax+5$
$L:y=3x-4$
CとLの共有点が2点のとき、CとLで囲まれる面積
この動画を見る 

【因数定理】因数定理の使い方と原理を解説しました!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 3rd School
問題文全文(内容文):
因数定理の使い方と原理について解説します。
この動画を見る 
PAGE TOP