2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University - 質問解決D.B.(データベース)

2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University

問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$

出典:2019年東京大学入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$

出典:2019年東京大学入試問題
投稿日:2019.02.28

<関連動画>

大学入試問題#398「あえての正面突破!!」 京都教育大学2009 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} log(1+\tan\ x) dx$

出典:2009年京都教育大学 入試問題
この動画を見る 

大学入試問題#440「この積分は初見では、きついが、アイデアは知っておくべき」 東北医科薬科大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^3+1)^2}$
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^3+1}=\displaystyle \frac{\sqrt{ 3 }}{9}\pi+\displaystyle \frac{1}{3}log\ 2$

出典:2023年東北医科薬科大学 入試問題
この動画を見る 

【数Ⅲ-152】定積分の置換積分法①

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法①)

Q.次の定積分を求めよ。

①$\int_{-2}^1(2x+1)^4 dx$

➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$

③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
この動画を見る 

大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
この動画を見る 

【高校数学】毎日積分64日目~47都道府県制覇への道~【⑧福岡】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】
この動画を見る 
PAGE TOP