福田の数学〜慶應義塾大学2021年看護医療学部第2問(1)〜反復試行の確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年看護医療学部第2問(1)〜反復試行の確率

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の\\
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、\\
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。\\
点Pの座標が(2,2)である確率は\boxed{\ \ ス\ \ }であり、Pと原点との距離が3以上である\\
確率は\boxed{\ \ セ\ \ }である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない\\
条件付確率は\boxed{\ \ ソ\ \ }である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の\\
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、\\
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。\\
点Pの座標が(2,2)である確率は\boxed{\ \ ス\ \ }であり、Pと原点との距離が3以上である\\
確率は\boxed{\ \ セ\ \ }である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない\\
条件付確率は\boxed{\ \ ソ\ \ }である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.06

<関連動画>

福田のわかった数学〜高校1年生070〜場合の数(9)じゅず順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(9) じゅず順列\\
次のような玉で数珠を作る方法は何通りか。\\
(1)白玉1個、黄玉2個、赤玉4個\\
(2)白玉2個、黄玉2個、赤玉4個\\
\end{eqnarray}
この動画を見る 

選択を変えると確率が上がる理由とは?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
モンティホール問題の解説動画です
この動画を見る 

福田の数学〜京都大学2022年理系第2問〜連続しない自然数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 箱の中に1からnまでの番号の付いたn枚の札がある。ただし、n \geqq 5とし、\\
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を\\
小さい順にX,Y,Zとする。このとき、Y-X \geqq 2かつZ-Y \geqq 2となる確率を\\
求めよ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

場合の数 数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)

出典:数学オリンピック 予選問題
この動画を見る 

『3×4=?』

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【問題文】『3×4=?』
この動画を見る 
PAGE TOP