【高校数学】数Ⅰ-19 1次不等式③(連立不等式編) - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-19 1次不等式③(連立不等式編)

問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$

③$2x-1\lt5x+8\lt7x+4$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$

③$2x-1\lt5x+8\lt7x+4$
投稿日:2014.04.12

<関連動画>

データの分析 データが変更されたときの平均、分散の関係【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る 

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
この動画を見る 

【数Ⅰ】【数と式】根号を含む計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。

次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$


次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る 

二次方程式が整数解を持つ条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m$自然数

$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値
この動画を見る 

「定数a入りの二次不等式」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
この動画を見る 
PAGE TOP