問題文全文(内容文):
$\boxed{6}$
$x\geqq 1$とする.
$f(x)=\sin (\log x)$
各$n=0,1,2,・・・$に対して$f(a_n)=0$とする.
曲線$y=f(x)$ $(a_n \leqq x \leqq a_{n+1})$と
$x$軸で囲まれた面積$S_n$を求めよ.
$\boxed{6}$
$x\geqq 1$とする.
$f(x)=\sin (\log x)$
各$n=0,1,2,・・・$に対して$f(a_n)=0$とする.
曲線$y=f(x)$ $(a_n \leqq x \leqq a_{n+1})$と
$x$軸で囲まれた面積$S_n$を求めよ.
単元:
#積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$x\geqq 1$とする.
$f(x)=\sin (\log x)$
各$n=0,1,2,・・・$に対して$f(a_n)=0$とする.
曲線$y=f(x)$ $(a_n \leqq x \leqq a_{n+1})$と
$x$軸で囲まれた面積$S_n$を求めよ.
$\boxed{6}$
$x\geqq 1$とする.
$f(x)=\sin (\log x)$
各$n=0,1,2,・・・$に対して$f(a_n)=0$とする.
曲線$y=f(x)$ $(a_n \leqq x \leqq a_{n+1})$と
$x$軸で囲まれた面積$S_n$を求めよ.
投稿日:2021.05.22





