問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。
(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。
【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
【1問目】
$m,n$は整数とする。次の命題を証明せよ。
(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。
【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
チャプター:
00:00~ 1問目
03:33~ 2問目
07:00~ 3問目
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。
(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。
【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
【1問目】
$m,n$は整数とする。次の命題を証明せよ。
(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。
【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
投稿日:2024.11.06