大学入試問題#200 大阪教育大学2022 定積分 King property - 質問解決D.B.(データベース)

大学入試問題#200 大阪教育大学2022 定積分 King property

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{8+\sin^2x}\ dx$

出典:2022年大阪教育大学 入試問題
チャプター:

04:43~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{8+\sin^2x}\ dx$

出典:2022年大阪教育大学 入試問題
投稿日:2022.05.17

<関連動画>

福田のおもしろ数学358〜定積分の計算

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$I=\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$の値を求めて下さい。
この動画を見る 

大学入試問題#130 東海大学医学部(2016) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x(1+x)^2}{(1+x^2)^2}\ dx$を計算せよ。

出典:2016年東海大学医学部 入試問題
この動画を見る 

福田の数学〜東北大学2024年理系第6問〜円錐の側面と平面の交わりの曲線

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $xyz$空間内の$xy$平面上にある円C:$x^2$+$y^2$=1および円盤D:$x^2$+$y^2$≦1を考える。Dを底面とし点P(0,0,1)を頂点とする円錐をKとする。A(0,-1,0), B(0,1,0)とする。$xyz$空間内の平面H:$z$=$x$を考える。すなわち、Hは$xz$平面上の直線$z$=$x$と線分ABをともに含む平面である。Kの側面とHの交わりとしてできる曲線をEとする。$-\frac{\pi}{2}$≦$\theta$≦$\frac{\pi}{2}$を満たす実数$\theta$に対し、円C上の点Q($\cos\theta$,$\sin\theta$,0)をとり、線分PQとEの共有点をRとする。
(1)線分PRの長さを$r(\theta)$とおく。$r(\theta)$を$\theta$を用いて表せ。
(2)円錐Kの側面のうち、曲線Eの点Aから点Rまでを結ぶ部分、線分PA、および線分PRにより囲まれた部分の面積を$S(\theta)$とおく。$\theta$と実数$h$が条件0≦$\theta$<$\theta$+$h$≦$\frac{\pi}{2}$ を満たすとき、次の不等式が成り立つことを示せ。
$\frac{h\left\{r(\theta)\right\}^2}{2\sqrt 2}$≦$S(\theta+h)-S(\theta)$≦$\frac{h\left\{r(\theta+h)\right\}^2}{2\sqrt 2}$
(3)円錐Kの側面のうち、円Cの$x$≧0の部分と曲線Eにより囲まれた部分の面積をTとおく。Tを求めよ。必要であれば$\tan\frac{\theta}{2}$=$uとおく置換積分を用いてもよい。
この動画を見る 

大学入試問題#429「誘導があってもよいような・・・」 小樽商科大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^{\frac{5}{2}} dx$

出典:小樽商科大学
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を$x$について微分せよ。
(1) $\displaystyle y=\int_x^{2x}\cos^2t~dt$

(2) $\displaystyle y=\int_x^{x^2}e^t\sin t~dt$
この動画を見る 
PAGE TOP