【高校数学】 数B-10 ベクトルの成分③ - 質問解決D.B.(データベース)

【高校数学】 数B-10 ベクトルの成分③

問題文全文(内容文):
2点A(a_1,a_2)、B(b_1,b_2)について
$\overrightarrow{ AB }=$①(____,____)
$|\overrightarrow{ AB }|=$②(____,____)

◎4点、$0(0,0)、A(3,0)、B(-1,2)、C(-2,-4)$について、 次のベクトルを成分で表し、それぞれの大きさを求めよう。

③$\overrightarrow{ OB }$

④$\overrightarrow{ AB }$

⑤$\overrightarrow{ CB }$

⑥$\overrightarrow{ BA }$
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点A(a_1,a_2)、B(b_1,b_2)について
$\overrightarrow{ AB }=$①(____,____)
$|\overrightarrow{ AB }|=$②(____,____)

◎4点、$0(0,0)、A(3,0)、B(-1,2)、C(-2,-4)$について、 次のベクトルを成分で表し、それぞれの大きさを求めよう。

③$\overrightarrow{ OB }$

④$\overrightarrow{ AB }$

⑤$\overrightarrow{ CB }$

⑥$\overrightarrow{ BA }$
投稿日:2015.11.27

<関連動画>

福田の数学〜立教大学2025理学部第1問(2)〜内積と絶対値の計算問題

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$2$つの平面ベクトル$\overrightarrow{a},\overrightarrow{b}$は、

$\vert \overrightarrow{a}+\overrightarrow{b} \vert=4,\vert \overrightarrow{a}-\overrightarrow{b} \vert =2$を満たすとする。

このとき、内積$\overrightarrow{a}・\overrightarrow{b}$の値は$\boxed{イ}$である。

また、$\vert 2\overrightarrow{a}-3\overrightarrow{b} \vert^2+\vert 3 \overrightarrow{a}-2\overrightarrow{b} \vert^2$の値は$\boxed{ウ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
 $\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第2問〜ねじれの位置にある直線上の2点ずつでできる四面体の体積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

空間の点$(0,0,1)$を通り

$(1,-1,0)$を方向ベクトルとする

直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を

方向ベクトルとする直線を$m$とする。

(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。

また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。

このとき$P$と$Q$の座標、

および線分$PQ$の長さを求めよ。

(2)$\ell$上に$2$点

$A=(t,-t,1),$

$B(2+t+\sin t,-2-t-\sin t,1)$

があり、$m$上に$2$点

$C=(1,t,3,-2t),$

$D=(1,2+t<\cos t,-1-2t-2\cos t)$

があるとする。ただし、$y$は実数とする。

四面体$ABCD$の体積を$V(t)$とする。

$V(0)$を求めよ。

(3)$t$が$t\geqq 0$を動くとき、

$V(t)$の最大値と最小値を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

数検準1級1次(3番 ベクトル)

単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $\vert \overrightarrow{ a }\vert=\vert \overrightarrow{ b }\vert,\vert \overrightarrow{ c }\vert=1$
$\vert \overrightarrow{ a }\vert \perp \vert \overrightarrow{ b }\vert,\vert \overrightarrow{ b }\vert \perp \vert \overrightarrow{ c }\vert,\vert \overrightarrow{ c }\vert \perp \vert \overrightarrow{ a}\vert$のとき,

$\vert \overrightarrow{ x }\vert=\vert \overrightarrow{ a }\vert+2\vert \overrightarrow{ b }\vert+3\vert \overrightarrow{ c }\vert$
$\vert \overrightarrow{ y }\vert=3\vert \overrightarrow{ a }\vert+\vert \overrightarrow{ b }\vert-2\vert \overrightarrow{ c }\vert$
のなす角$\theta$に対して$\cos\theta$の値を求めよ.
この動画を見る 
PAGE TOP