高専数学 微積I #243(2) 媒介変数表示関数のx軸回転体 - 質問解決D.B.(データベース)

高専数学 微積I #243(2) 媒介変数表示関数のx軸回転体

問題文全文(内容文):
$0 \leqq t \leqq 1$である.
曲線$x=t^2,y=e^t$
$x$軸,$y$軸,直線$x=1$で囲まれた図形を
$x$軸を中心とした回転体の体積$V$を求めよ.
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0 \leqq t \leqq 1$である.
曲線$x=t^2,y=e^t$
$x$軸,$y$軸,直線$x=1$で囲まれた図形を
$x$軸を中心とした回転体の体積$V$を求めよ.
投稿日:2021.06.29

<関連動画>

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標$(r,\ θ)$が、時刻$t \geqq 0$の関数として、
$r=1+t,\ \ \ θ=\log(1+t)$
で与えられるとする。時刻$t=0$にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1)$\ t \gt 0$において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2022上智大学理系過去問
この動画を見る 

放物線と直線  2024早大本庄  オンラインで教えている生徒が早稲田本庄に合格しました!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線$y=x^2$とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る 

【高校数学】数Ⅲ-42 曲線の媒介変数表示③

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$t$を媒介変数とする。
次の式で表される図形はどのような曲線か。

①$x=\dfrac{1}{1+t^2}、y=\dfrac{t}{1+t^2}$

②$x=t+\dfrac{1}{t}、y=t-\dfrac{1}{t} \quad (t \gt 0)$
この動画を見る 

福田の数学〜神戸大学2025理系第3問〜媒介変数表示で表された曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

媒介変数$\theta$を用いて

$x=\sin\theta,y=\cos\theta + \vert \sin\theta \vert \quad (0\leqq \theta \leqq 2\pi)$

で表される曲線を$C$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

(2)曲線$C$で囲まれた部分の面積を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

【高校数学】数Ⅲ-43 曲線の媒介変数表示④

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP