山口大 フェルマー素数 - 質問解決D.B.(データベース)

山口大 フェルマー素数

問題文全文(内容文):
整数$n \geqq 0$,$F_n=2^{2^n}+1$とする.

(1)$F_{n+1}=F_0F_1F_2・・・・・・F_n+2$を示せ.
(2)$m\neq n$であり,$F_m$と$F_n$は互いに素を示せ.

2005山口大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$n \geqq 0$,$F_n=2^{2^n}+1$とする.

(1)$F_{n+1}=F_0F_1F_2・・・・・・F_n+2$を示せ.
(2)$m\neq n$であり,$F_m$と$F_n$は互いに素を示せ.

2005山口大過去問
投稿日:2020.10.02

<関連動画>

9999の倍数 洛南高校附属中

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
8ケタの整数7A5BC3D1が9999の倍数になるとき
$A=? B=? C=? D=?$
洛南高等学校附属中学校
この動画を見る 

京都大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数であり,$d,p$は素数である.
$a^p-b^p=d$ならば$d$を$2p$で割った余りは1であることを示せ.

1995京都大過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)=n^3+2n^2+2n$
$g(n)=3n+2$
整数$f(n)$は整数$g(n)$の倍数である.
nをすべて求めよ.

この動画を見る 

九州大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$

(1)
$f(1),f(2)$を3で割った余りは?

(2)
$f(x)=0$は整数解がないことを証明せよ

(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ

出典:2018年九州大学 過去問
この動画を見る 

東工大 ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は$10000$以下の自然数である.
$[\sqrt{n}]$が$n$の約数となる.$n$は何個あるか.

2012東工大過去問
この動画を見る 
PAGE TOP