数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
投稿日:2021.05.30

<関連動画>

三重大 逆 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}

(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ

(2)
$S_{n+1}$を$a_{n}$の1次式で表せ

出典:1996年三重大学 過去問
この動画を見る 

19大阪府教員採用試験(数学:2-7番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣-(7)
a<b<c , b>0
a,b,cの順で等差数列、$a^2,b^2,c^2$の順で等比数列のとき公比rを求めよ。

この動画を見る 

【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第3問〜群数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 数列 $\frac{0}{1}$, $\frac{1}{1}$, $\frac{0}{2}$, $\frac{1}{2}$, $\frac{2}{2}$, $\frac{0}{3}$, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{3}{3}$, $\frac{0}{4}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{4}{4}$, $\frac{0}{5}$, ...
の第$n$項を$a_n$とする。
(1)約分することで$a_n$=1 を満たす自然数$n$のうち、$k$番目に小さいものを$N_k$で表す。例えば、$N_1$=2, $N_2$=5 である。また、自然数$k$に対して、$N_k$を$k$を用いて表すと$N_k$=$\boxed{\ \ セ\ \ }$である。また、自然数$k$に対して、数列$\left\{a_n\right\}$の初項から第$N_k$項までの和を$k$を用いて表すと$\boxed{\ \ ソ\ \ }$である。
(2)約分することで$a_n$=$\frac{1}{4}$ を満たす自然数$n$のうち、$k$番目に小さいものを$M_k$で表す。例えば$M_1$=11, $M_2$=$\boxed{\ \ タ\ \ }$である。このとき、自然数$k$に対して、$M_k$を$k$を用いて表すと$M_k$=$\boxed{\ \ チ\ \ }$である。
(3)$a_{200}$を約分した形で表すと$a_{200}$=$\boxed{\ \ ツ\ \ }$である。また数列$\left\{a_n\right\}$の初項から第200項までの和は$\boxed{\ \ テ\ \ }$である。
この動画を見る 

福田のおもしろ数学420〜間に左右の数の和を次々と書き足していくときの総和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

黒板の両端に$1$が書かれている。

$1$番の生徒がその間に

左右の数の和である$2$を書く。

$2$番の生徒が$2$カ所の間に

左右の数の和である$3$を書く。

この操作を繰り返したとき、

$n$番の生徒が書き終えたとき、数字の合計はいくらか?

図は動画内参照
   
この動画を見る 
PAGE TOP