【数Ⅲ】【微分】yはxの関数とする。次の微分方程式を解け。(1) dy/dx=y/x(2) xy'+1=y(3) (x-1)dy/dx+(y-1)=0(4) (1-x²)y'+xy=0 - 質問解決D.B.(データベース)

【数Ⅲ】【微分】yはxの関数とする。次の微分方程式を解け。(1) dy/dx=y/x(2) xy'+1=y(3) (x-1)dy/dx+(y-1)=0(4) (1-x²)y'+xy=0

問題文全文(内容文):
yはxの関数とする。次の微分方程式を解け。
$\frac{dy}{dx} = \frac{y}{x}$
$xy'+ 1 = y$
$(x - 1)\frac{dy}{dx} + (y - 1) = 0$
$(1 - x^2)y' + xy = 0$
チャプター:

0:00 オープニング
0:19 (1)
2:31 (2)
4:08 (3)
5:06 (4)

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
yはxの関数とする。次の微分方程式を解け。
$\frac{dy}{dx} = \frac{y}{x}$
$xy'+ 1 = y$
$(x - 1)\frac{dy}{dx} + (y - 1) = 0$
$(1 - x^2)y' + xy = 0$
投稿日:2026.01.03

<関連動画>

工夫が必要な回転体の体積 By にっし~Diaryさん

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$C_1:y=x^2$と$C_2:y=a\ log\ x$は$x=k$で接する
(1)$a$の値を求めよ
(2)$C_1,C_2,x$軸で囲まれた部分を、直線$x=k$を中心に回転させてできる体積を求めよ
この動画を見る 

大学入試問題#560「初手が大事」 同志社大学(2016) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sqrt{ e^{2x}+1 }\ dx$

出典:2016年同志社大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】体積の2等分 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
この動画を見る 

大学入試問題#234 東京理科大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{3}{4}\pi}\sqrt{ 1-\cos\ 4x }\ dx$

出典:2012年東京理科大学 入試問題
この動画を見る 

【高校数学】毎日積分78日目~47都道府県制覇への道~【㉑奈良】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
この動画を見る 
PAGE TOP