一橋大学 三次関数の最大値 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大学 三次関数の最大値 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2007一橋大学過去問題
aを定数とし、$f(x)=x^3-3ax^2+a$とする。
$x \leqq 2$の範囲でf(x)の最大値が105となるようなaをすべて求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2007一橋大学過去問題
aを定数とし、$f(x)=x^3-3ax^2+a$とする。
$x \leqq 2$の範囲でf(x)の最大値が105となるようなaをすべて求めよ。
投稿日:2018.05.29

<関連動画>

素数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,q,rは素数である.
$p^q+1=r$を満たす(p,q,r)をすべて求めよ.
この動画を見る 

福田の数学〜九州大学2022年理系第2問〜商と余りの関係と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$を3以上の自然数、$\alpha,\beta$を相異なる実数とするとき、以下の問いに答えよ。
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。
$x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C$
(2)(1)のA,B,Cを$n,\alpha,\beta$を用いて表せ。
(3)(2)のAについて、nと$\alpha$を固定して、$\beta$を$\alpha$に近づけたときの極限
$\lim_{\beta \to \alpha}A$を求めよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 

埼玉大 直方体の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三辺の和が9cmで表面積が$48m^2$の直方体の体積の最大値を求めよ.

長崎大過去問
この動画を見る 

大阪大 点と直線の距離 公式証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x_0,y_0)$と$ax+by+c=0$の距離が$\dfrac{\vert ax_0+by_0+c \vert}{\sqrt{a^2+b^2}}$であることを証明せよ.

大阪大過去問
この動画を見る 
PAGE TOP