北海道大 整数 - 質問解決D.B.(データベース)

北海道大 整数

問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
投稿日:2020.11.17

<関連動画>

"2025"を含む予想問題(2):入試予想問題~全国入試問題解法

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$4m^2-2025=n^2-2$
$となる自然数m,nの組のうちmが最小のものを求めよ。$
この動画を見る 

等間隔で素数が出現!?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
5、11、17、23、29は、等間隔で並ぶ5つの整数がすべて素数。
では、等間隔で並ぶ 6つの整数すべてが素数となる組を1つ例示せよ。
この動画を見る 

2021問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$2021^2+7・5^2・3^4=p^3qr$
$p,q,r$は2以上の自然数である.
この動画を見る 

福田のおもしろ数学324〜条件を満たす素数を調べる

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p+2,p+6,p+8,p+12,p+14$がすべて素数になるような素数$p$をすべて求めよ。
$q+2,q+6,q+8,q+12$がすべて素数になるような素数qが$200$以下の自然数の中に少なくとも3個あることを示せ。
この動画を見る 

約分の裏技をまとめました

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の数を約分せよ
(1) $\displaystyle \frac{3007}{3201}$

(2) $\displaystyle \frac{10033}{12877}$
この動画を見る 
PAGE TOP