北海道大 整数 - 質問解決D.B.(データベース)

北海道大 整数

問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
投稿日:2020.11.17

<関連動画>

東工大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
$x<y<z$(自然数)

東京工業大学過去問題
$(ab-1)(bc-1)(ca-1)$がabcで割り切れる1<a<b<c(自然数)
a,b,cをすべて求めよ。
この動画を見る 

合同式の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${3^{3}}^{2023}$を11で割ったあまりは?
この動画を見る 

質問に対する返答です。整数問題,数列の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1 \leqq t< u < v \leqq 6m$
$t+u+v=6m$
この動画を見る 

海外数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^3+q^3-3pq+1$が素数となる自然数$(p,q)$の組をすべて求めよ.

海外数学オリンピック過去問
この動画を見る 

素数製造マシーン 素数とならないものを答えよ 洛星(改)

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$p=n^2+n+41$
100以下の自然数nのうちpが素数とならないものを2つ答えよ

洛星高等学校(改)
この動画を見る 
PAGE TOP