入試予想問題:岐阜県立高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

入試予想問題:岐阜県立高等学校~全国入試問題解法

問題文全文(内容文):
入試予想問題 岐阜県立高等学校

・幅広い学力に対応 (←基礎・基本)
・平面図形(←→空間図形)
・連立方程式は文章題。
・作図は必須

・$-3+15 \div 3$
・$8a^2 \div \displaystyle \frac{2}{3}a\timesℓ$
・$\sqrt{ 27 }-\sqrt{ 12 }$

・2個のさいころを同時に投げるとき、
出る目の数の差が$1$になる確率
・$y$が$x$に反比例し、$x=3$のとき$y=6$である。
$x=2$のときの$y$の値を求めなさい。

4点$ABCDは$円○の円周上の点。
点$B$を通り$CD$に平行な直線と$DA$を延長した直線の交点を$E$とする。

(1) $\triangle ABC ∞ \triangle ABED$であることの証明.
(2) $AE = 2cm, BE = 3cm, CD=5cm BC = 2AB$のとき、

(ア)$AD$の長さ?
(イ)△BCDの面積は$\triangle ABDの何倍か求めよ。
※図は動画内参照
単元: #数学(中学生)#高校入試過去問(数学)#岐阜県立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試予想問題 岐阜県立高等学校

・幅広い学力に対応 (←基礎・基本)
・平面図形(←→空間図形)
・連立方程式は文章題。
・作図は必須

・$-3+15 \div 3$
・$8a^2 \div \displaystyle \frac{2}{3}a\timesℓ$
・$\sqrt{ 27 }-\sqrt{ 12 }$

・2個のさいころを同時に投げるとき、
出る目の数の差が$1$になる確率
・$y$が$x$に反比例し、$x=3$のとき$y=6$である。
$x=2$のときの$y$の値を求めなさい。

4点$ABCDは$円○の円周上の点。
点$B$を通り$CD$に平行な直線と$DA$を延長した直線の交点を$E$とする。

(1) $\triangle ABC ∞ \triangle ABED$であることの証明.
(2) $AE = 2cm, BE = 3cm, CD=5cm BC = 2AB$のとき、

(ア)$AD$の長さ?
(イ)△BCDの面積は$\triangle ABDの何倍か求めよ。
※図は動画内参照
投稿日:2021.03.01

<関連動画>

規則性 東大寺学園 2021

アイキャッチ画像
単元: #計算と数の性質#数学(中学生)#規則性(周期算・方陣算・数列・日暦算・N進法)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2021は上から何段目の左から何番目?
*図は動画内参照

2021東大寺学園高等学校
この動画を見る 

【順番はどうする…!?】平方根:日本大学習志野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#日本大学習志野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学習志野高等学校

次の▭をうめよ。
$(1+\sqrt{ 2 })(1+\sqrt{ 8 })\times (1-\displaystyle \frac{1}{\sqrt{ 2 }})(1-\displaystyle \frac{1}{\sqrt{ 8 }})=$▭
この動画を見る 

【高校受験対策】数学-死守46

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守46

①$4-3 \times (-1)$を計算せよ。

➁$(\frac{3}{4}-2)\div\frac{5}{6}$を計算せよ。

③$3a^2b \times 4ab \div (-2b)$を計算せよ。

④$\sqrt{12}+\sqrt{3}(\sqrt{3}-6)$を計算せよ。

⑤$2x^2-20x+50$を因数分解せよ。

⑥2次方程式$(x-2)(x+4)-6$を解け。

⑦$a$個のりんごを10人の生徒に$b$個ずつ配ったら、5個余った。
この数量の関係を等式で表せ。

⑧のア~エの関数のうち、そのグラフが点$(-2,1)$を通っているものはどれか。
正しいものを2つ選んでその記号を書け。

ア $y=2x$
イ $y=-\frac{2}{x}$
ウ $y=x-3$
エ $y=\frac{1}{4}x^2$

⑨右の図のような、線分$AB$を直径とする半円$o$が ある。
$\stackrel{\huge\frown}{AB}$上に2点、$A,B$と異なる点$C$をとる。
$\stackrel{\huge\frown}{AC}$上に$\stackrel{\huge\frown}{AD}$=$\stackrel{\huge\frown}{DC}$となるように点$D$をとり、 点$D$と点$A$、点$D$と点$C$をそれぞれ結ぶ。
$\angle ABD=35°$のとき、$\angle BAC$の大きさは何度か。

➉右の図のような直方体があり、$AB=BC$である。
点$A$と点$F$、点$B$と、点$D$をそれぞれ 結ぶ。
$AF=3cm$、$BD=2cm$であるとき、この直方体の体積が何$cm^3$か求めよ。
この動画を見る 

東海高校 ただの連立方程式だけど‥‥

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
(\sqrt5-1)x+y=\sqrt5-1 \\
x+(\sqrt5+1)y=\sqrt5+1
\end{array}
\right.
\end{eqnarray}$

東海高校過去問
この動画を見る 

2023高校入試数学解説88問目 直方体と内接球 埼玉県学校選択問題(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△IPQと球は接している
球の半径=2
x=?
*図は動画内参照

2023埼玉県(改)ラスボス
この動画を見る 
PAGE TOP