斜めの回転体 山手学院 B - 質問解決D.B.(データベース)

斜めの回転体 山手学院 B

問題文全文(内容文):
△ABCを直線mの周りに1回転したときの体積=?
*図は動画内参照

2021山手学院高等学校
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABCを直線mの周りに1回転したときの体積=?
*図は動画内参照

2021山手学院高等学校
投稿日:2021.02.17

<関連動画>

【これが入試問題…!?】確率:大阪教育大学附属高等学校平野校舎~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
Aさんは,98%の確率で予想を当てる天才スカウトマンBからスカウトされました.
そのことが嬉しくなりお母さんに相談しました.
そのときの会話の中の$ (1)~(8)$に当てはまる数を答えなさい.
ただし,$ (8)$は小数第一位までの概算で答えること.

母:そんなうまい話,あるはずないからやめときなさい.

A:最初はそう思ったけど,インターネットで調べてみたら,
Bさんって,98%の確率でメジャーデビューできるか
できないか予想を当てることができる天才スカウトマンなのよ.
 
 その人から声をかけられたのだから,ほぼ確定みたいなものだよ.

母:じゃあ実際に計算してみようか?

この100万人に対して,Bさんが予想した場合を考えてみると,
メジャーデビューできる100人のうちの$ (1)$人はBさんの予想が当たって,
$ (2)$人は外れるというわけね.

100万人のアイドル志望者のうち,メジャーデビューできない人は?

A:$ (3)$人

母:$ (3)$人のうちのBさんの予想が当たるのは$ (4)$人,
外れるのは$ (5) $人ということになるよね.

さあ ここからが問題です.

あなたのようにBさんに「※」と予想される人のうち,
 実際にメジャーデビューできる確率はいくらでしょう?

A:Bさんが「※」と予想する人というのは全部で$ (6)$人で,
そのうち実際にメジャーデビューできる人は$ (7) $人だからその確率は........。

 えーーーっ!$ (8)$%未満なの?

大阪教育大学附属高等学校平野校舎過去問


この動画を見る 

【一本道が見えますか】連立方程式:巣鴨高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.

巣鴨高校過去問

この動画を見る 

数学の入試で知る解法~全国入試問題解法 #shorts #直線 #高校受験 #mathematics #sound

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#1次関数
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点$ (-1,1),(2,7)$を通る直線の式を答えなさい.

新潟県入試問題過去問
この動画を見る 

【数学】中2-36 一次関数の交点をだす① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
関数の交点をだすなら①____を使おう!

◎交点の座標をだそう!
②$\begin{eqnarray}
\left\{
\begin{array}{l}
y = 3x-5 \\
x +2y =11
\end{array}
\right.
\end{eqnarray}$

③※動画内参照
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 
PAGE TOP