横浜市立(医)3次方程式の解 - 質問解決D.B.(データベース)

横浜市立(医)3次方程式の解

問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.

1973年横浜市立(医)過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.

1973年横浜市立(医)過去問
投稿日:2021.09.13

<関連動画>

4次方程式

アイキャッチ画像
単元: #剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
解け
$(6x-1)(3x-1)(2x-1)(x-1)+x^{2}-25 = 0$
この動画を見る 

慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
この動画を見る 

岡山大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
この動画を見る 

俺のアイデアを聞いて

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2+x+1=$の1つの解を$\omega$とする.
$1+2\omega+3\omega^2+4\omega^3+…+100\omega^{99}=a\omega+b$である.a.bの値を求めよ.
この動画を見る 

【数学】中高一貫校問題集 数学3 数式・関数編 109 虚数を含む2次方程式の解法

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよ。
(1)(2+i)x²-(1+6i)x-2(3-4i)=0
(2)(3+2i)x²+(8+5i)x-3(1+i)=0
この動画を見る 
PAGE TOP