横浜市立(医)3次方程式の解 - 質問解決D.B.(データベース)

横浜市立(医)3次方程式の解

問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.

1973年横浜市立(医)過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.

1973年横浜市立(医)過去問
投稿日:2021.09.13

<関連動画>

福田の数学〜一橋大学2024年文系第3問〜多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#剰余の定理・因数定理・組み立て除法と高次方程式#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$は$x$に関する4次方程式で4次の係数は1である。$f(x)$は$(x+1)^2$で割ると1余り、$(x-1)^2$で割ると2余る。$f(x)$を求めよ。
この動画を見る 

岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$  n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
この動画を見る 

2021京都大 秒殺整数問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

山梨大2020 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{(\sqrt3+i)^n(\sqrt3+3i)}{-1+i}$は実数出ないことを示せ.

2020山梨大過去問
この動画を見る 
PAGE TOP