福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限

問題文全文(内容文):
${\Large\boxed{1}}$ $(2)0 \lt \alpha \lt 1,m \gt 0$とする。$曲線y=x^{\alpha}-mx(x \geqq 0)$と$x軸$で囲まれた図形を$x軸$の周りに1回転させてできる回転体の体積を$V$とする。$m$を固定して$a \to +0$とするときの$V$の極限値を$m$の式で表すと、$\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }$となる。
また、$\alpha$を固定して$m \to \infty$とするとき$m^3V$が$0$でない数に収束するならば
$\alpha=\boxed{\ \ (お)\ \ }$である。

2021慶應義塾大学医学部過去問
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(2)0 \lt \alpha \lt 1,m \gt 0$とする。$曲線y=x^{\alpha}-mx(x \geqq 0)$と$x軸$で囲まれた図形を$x軸$の周りに1回転させてできる回転体の体積を$V$とする。$m$を固定して$a \to +0$とするときの$V$の極限値を$m$の式で表すと、$\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }$となる。
また、$\alpha$を固定して$m \to \infty$とするとき$m^3V$が$0$でない数に収束するならば
$\alpha=\boxed{\ \ (お)\ \ }$である。

2021慶應義塾大学医学部過去問
投稿日:2021.06.24

<関連動画>

福田の数学〜中央大学202理工学部第4問〜sin(x)のn乗の定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n=1,2,3,\cdots$に対し、$\displaystyle I_n=\int_0^{\frac{\pi}{2}}\sin^nxdx$とおく。また、$\displaystyle I_0=\int_0^{\frac{\pi}{2}}1dx$とする。
(1) $(n+1)I_{n+1}=nI_{n-1}$を示せ。
(2) $nI_nI_{n-1}$を求めよ。
(3) $I_{n+1} < I_n$を示せ。
(4) 極限$\displaystyle \lim_{n \to\infty}nI_n^2$を求めよ。
この動画を見る 

高専数学 微積II #53(3)(4) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$z_u,z_{\nu}$を,$u,\nu,z_x,z_y$で表せ.

(3)$x=\tan\dfrac{\nu}{u},y-\cos(u+\nu)$
(4)$x=u\log\nu,y=e^u \nu$
この動画を見る 

福田のわかった数学〜高校3年生理系005〜極限(5)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(5)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

奇数の4乗の逆数の和 オイラー級数 πが登場

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^4}+\frac{1}{3^4}+\frac{1}{5^4}+\frac{1}{7^4}+\cdots=\dfrac{\pi^4}{96}$
この動画を見る 
PAGE TOP