大学入試問題#56 立教大学(2021) 数列 - 質問解決D.B.(データベース)

大学入試問題#56 立教大学(2021) 数列

問題文全文(内容文):
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。

出典:2021年立教大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。

出典:2021年立教大学 入試問題
投稿日:2021.12.07

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)整数a,bは等式$(a+bi)^3=-16+16i$を満たす。ただし、iは虚数単位とする。
$(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}$を計算すると$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#99 慶應義塾大学2004 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2 \lt 9$
$x^2 \leqq y^2$をみたす整数の組$x,y$の個数を求めよ。

出典:2004年慶應義塾大学 入試問題
この動画を見る 

筑波大 3倍角の公式と3次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
09年 筑波大学過去問

(1)$\cos 3θ=4\cos ^3θ-\cos θ$を示せ

(2)$2\sin 80^\circ$は$x^3-3x+1=0$の解であることを示せ

(3)$x^3-3x+1=(x-2\sin 80^\circ)$×$(x-2\cosα)$×$(x-2\cosβ)$
となる$α、β(0^\circ\ltα\ltβ\lt180^\circ)$を求めよ
この動画を見る 

秋田大(医) 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,A,Bを整数とする.
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるA,Bの値を求めよ.

秋田大(医)過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
$\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }$
である。

2021上智大学文系過去問
この動画を見る 
PAGE TOP