問題文全文(内容文):
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。
出典:2021年立教大学 入試問題
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。
出典:2021年立教大学 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。
出典:2021年立教大学 入試問題
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。
出典:2021年立教大学 入試問題
投稿日:2021.12.07