横浜市立大(医) - 質問解決D.B.(データベース)

横浜市立大(医)

問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け

出典:2000年横浜市立大学 過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け

出典:2000年横浜市立大学 過去問
投稿日:2019.06.15

<関連動画>

#32 数検1級1次 過去問 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z:$複素数
方程式$z^2-z+i\bar{ z }=i$を解け。
この動画を見る 

04大阪府教員採用試験(数学:3番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣ $Z_1,Z_2 \in \mathbb{C}$
$|Z_1|=|Z_2|=|Z_1+Z_2|=1$ ⇒ $Z_1^{3}=Z_2^{3}$を示せ
この動画を見る 

【数ⅢC】複素数平面の基本⑦内分点、外分点、重心を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$A(-3+2i),B(4-8i)$のとき線分ABの中点、3:1に内分、外分する点を表す複素数を求めよ
$\alpha=0,\beta=2+3i,γ=1+6i$の3点で表される三角形の重心を表す複素数を求めよ
この動画を見る 

【数C】【複素数平面】実数であることの証明 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
この動画を見る 

福田の数学〜立教大学2022年理学部第4問〜複素数平面上の点列と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
問題文全文(内容文):
複素数$\alpha=\frac{\sqrt3\ i}{1+\sqrt3\ i}$に対して、複素数$z_n$を
$z_n=8\alpha^{n-1}\ \ \ \ (n=1,\ 2,\ 3,\ ...)$
によって定める。ただしiは虚数単位とする。複素数平面において、原点をOとし、
$z_n$の表す点を$P_n$とする。このとき、以下の問いに答えよ。
(1)$\alpha$の絶対値|$\alpha$と変革$\arg\alpha$をそれぞれ求めよ。
ただし、$0 \leqq \arg\alpha \lt 2\pi$とする。
(2)$z_2,\ z_3$の実部と虚部をそれぞれ求めよ。
(3)$z_n$の極形式をnを用いて表せ。
(4)$O,\ P_n,\ P_{n+1}$を頂点とする三角形の面積$S_n$を$n$を用いて表せ。
(5)(4)で定めた$S_n$に対して、無限級数$\sum_{n=1}^{\infty}S_n$の和Sを求めよ。

2022立教大学理工学部過去問
この動画を見る 
PAGE TOP