問題文全文(内容文):
三角関数における加法定理の証明
【回転変換の解説付き!】
$\sin (a \pmβ)=\sin a \cos β \pm \cos a \sin β$
$\cos (a \pmβ)= \cos a \cos β \mp \sin a \sinβ$
三角関数における加法定理の証明
【回転変換の解説付き!】
$\sin (a \pmβ)=\sin a \cos β \pm \cos a \sin β$
$\cos (a \pmβ)= \cos a \cos β \mp \sin a \sinβ$
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角関数における加法定理の証明
【回転変換の解説付き!】
$\sin (a \pmβ)=\sin a \cos β \pm \cos a \sin β$
$\cos (a \pmβ)= \cos a \cos β \mp \sin a \sinβ$
三角関数における加法定理の証明
【回転変換の解説付き!】
$\sin (a \pmβ)=\sin a \cos β \pm \cos a \sin β$
$\cos (a \pmβ)= \cos a \cos β \mp \sin a \sinβ$
投稿日:2021.05.16