ウィルソンの定理 - 質問解決D.B.(データベース)

ウィルソンの定理

問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.

$100!$を$101$で割った余りを求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.

$100!$を$101$で割った余りを求めよ.
投稿日:2021.10.06

<関連動画>

難関中入試に出そうな問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1×3×5×7・・・×999
=$3^nP(P\not\equiv 0 \mod 3)$
nの値を求めよ.
この動画を見る 

互いに素の定義は?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数a,bが互いに素なら,$a-b$と$b$も互いに素であることを示せ.$(a \gt b)$


この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(1)〜倍数の個数を数える

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数
は$\boxed{\ \ アイウ\ \ }$個あり、2,3,5の少なくとも1つで割り切れ、
かつ6で割り切れない数は$\boxed{\ \ エオカ\ \ }$個ある。

2022慶應義塾大学商学部過去問
この動画を見る 

難問!!最大公約数と最小公倍数の関係  西武文理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。

西部学園文理高等学校
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$

出典:2018年一橋大学 過去問
この動画を見る 
PAGE TOP