問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
チャプター:
0:00 オープニング
0:05 問題文
0:14 問題解説(1)
1:40 問題解説(2)
4:25 名言
単元:
#数列#数学的帰納法#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
投稿日:2020.08.21