こういう問題が好き 城北 円周角 B - 質問解決D.B.(データベース)

こういう問題が好き 城北 円周角 B

問題文全文(内容文):
$\stackrel{\huge\frown}{AB} : \stackrel{\huge\frown}{CD} =?$
*図は動画内参照

2021城北高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{AB} : \stackrel{\huge\frown}{CD} =?$
*図は動画内参照

2021城北高等学校
投稿日:2021.02.15

<関連動画>

無限降下法って知ってる?整数問題の難問です【数学 入試問題】【九州大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを証明せよ。

九州大過去問
この動画を見る 

数学「大学入試良問集」【5−9 確率と二項定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複数の参加者がグー、チョキ、パーを出して勝敗を決めるジャンケンについて、以下の問いに答えよ。
ただし、各参加者は、グー、チョキ、パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする。
(1)
4人で一度だけジャンケンするとき、1人だけが勝つ確率、2人が勝つ確率、3人が勝つ確率、引き分けになる確率をそれぞれ求めよ。

(2)
$n$人で一度だけジャンケンをするとき、$r$人が勝つ確率を$n$と$r$を用いて表せ。
ただし、$n \geqq 2,1 \leqq r \lt n$とする。

(3)
$\displaystyle \sum_{r=1}^{n-1}{}_{ n } C_r=2^n-2$が成り立つことを示し、$n$人でジャンケンをするとき、引き分けになる確率を$n$を用いて表せ。
ただし、$n \geqq 2$とする。
この動画を見る 

2023高校入試数学解説93問目 整数問題 茨城県

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{252}{n}$がある自然数の2乗となる最も小さい自然数nは?
2023茨城県
この動画を見る 

傍接円の半径  難関高校受験者必見!!

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
図のxの長さを求めよ
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つのスートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の代わりに、A,J,Q,Kの記号を用いることが多い)
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。52枚のカードから5枚を抜き出す組合せの数は${}_{52}\textrm{C}_5=2598960$通りあるが、それがストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの5枚のカードの最小の数は$1,2,\ldots,\boxed{\ \ アイ\ \ }$のどれかであるから、それぞれのスートごとに$\boxed{\ \ アイ\ \ }$通り考えられる。よって、$4\times \boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }$通りのストレートフラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、スートがそろっていない組合せの数なので$\boxed{\ \ オカキクケ\ \ }$通りある。
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚のふたつの組があり、3枚の組を選ぶ組合せ$\boxed{\ \ コサ\ \ }\times {}_4\textrm{C}_3$、残り2枚のカードを選ぶ組合せは$\boxed{\ \ シス\ \ }\times {}_4\textrm{C}_2$であるから、フルハウスとなる組合せの数は$\boxed{\ \ コサ\ \ }\times{}_4\textrm{C}_3\times$$\boxed{\ \ シス\ \ }\times$${}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ }$ 通りである。

2021慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP