問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ
出典:2022年神戸大学 入試問題
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ
出典:2022年神戸大学 入試問題
チャプター:
00:00 イントロ(問題紹介)
00:22 本編スタート
06:32 作成した解答①
06:42 作成した解答②
06:52 エンディング(楽曲提供:兄いえてぃさん)
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ
出典:2022年神戸大学 入試問題
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ
出典:2022年神戸大学 入試問題
投稿日:2023.04.14