福田の1.5倍速演習〜合格する重要問題070〜筑波大学2017年度理系第5問〜格子点の個数とガウス記号と区分求積 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題070〜筑波大学2017年度理系第5問〜格子点の個数とガウス記号と区分求積

問題文全文(内容文):
5 xy平面において、x座標とy座標がともに整数である点を格子点という。また、実数aに対して、a以下の最大の整数を[a]で表す。記号[ ]をガウス記号という。
以下の問いではNを自然数とする。
(1) nを0 n Nを満たす整数とする。点(n, 0)と点(n, Nsin(πx2N))を結ぶ線分上にある格子点の個数をガウス記号を用いて表せ。
(2) 直線y=xと、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をA(N)とおく。このときA(N)を求めよ。
(3) 曲線y=Nsin(πx2N)(0 x N)と、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をB(N)とおく。(2)のA(N)に対してlimNB(N)A(N)を求めよ。

2017筑波大学理系過去問
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 xy平面において、x座標とy座標がともに整数である点を格子点という。また、実数aに対して、a以下の最大の整数を[a]で表す。記号[ ]をガウス記号という。
以下の問いではNを自然数とする。
(1) nを0 n Nを満たす整数とする。点(n, 0)と点(n, Nsin(πx2N))を結ぶ線分上にある格子点の個数をガウス記号を用いて表せ。
(2) 直線y=xと、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をA(N)とおく。このときA(N)を求めよ。
(3) 曲線y=Nsin(πx2N)(0 x N)と、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をB(N)とおく。(2)のA(N)に対してlimNB(N)A(N)を求めよ。

2017筑波大学理系過去問
投稿日:2023.01.24

<関連動画>

東北大(医)数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
[1an]は初項1a公差dの等差数列n=1anan+1を求めよ.

1998東北大(医他)過去問
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべてa1=1とする)
an+1=an4an1

an+1=2an

an+1=2(n+1)an

an+1=4an+8an+6
この動画を見る 

福田のおもしろ数学175〜0から10^nまでの数に現れる各桁の数字の総和を求める

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
0から10nまでに現れる各桁の数字の総和を求めてください。(10nも含む)
この動画を見る 

深読みしすぎた計算シリーズまとめ1

アイキャッチ画像
単元: #数列#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた計算シリーズまとめ1
この動画を見る 

福田の数学〜東北大学2024年文系第4問〜連立漸化式と不定方程式の整数解

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
4 nを正の整数とする。2つの整数an, bnを条件
(1+2)n=an+bn2
により定める。ここで2は無理数なので、このような整数の組(an, bn)はただ1つに定まる。
(1)an+1, bn+1an, bnを用いてそれぞれ表せ。さらにb4, b5, b6の値をそれぞれ求めよ。
(2)等式(12)n=anbn2 が成り立つことを数学的帰納法を用いて示せ。
(3)n≧2 のとき、bn+1bn1bn2 を求めよ。
(4)pb6qb5=1, 0≦p≦100, 0≦q≦100 をすべて満たす整数p, qの組(p, q)を1組求めよ。
この動画を見る 
PAGE TOP preload imagepreload image