高校入試にしては頑張った出題 愛光学園 - 質問解決D.B.(データベース)

高校入試にしては頑張った出題 愛光学園

問題文全文(内容文):
$\sqrt{180-3n}$が整数となる最小の①自然数n②正の有理数nを求めよ.

愛光学園過去問
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{180-3n}$が整数となる最小の①自然数n②正の有理数nを求めよ.

愛光学園過去問
投稿日:2022.12.03

<関連動画>

大学入試問題#87 立命館大学(2018) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: ますただ
問題文全文(内容文):
$n$:整数
$\sqrt{ n^2-8n+1 }$が整数となる$n$をすべて求めよ。

出典:2018年立命館大学 入試問題
この動画を見る 

超良問⁉️だと思う整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
この動画を見る 

ナイスな整数問題 富山大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
この動画を見る 

2020年問題 整数問題2020

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$自然数、すべて求めよ
$a^2+b^2=2020$
この動画を見る 

整数問題 チャレンジ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
この動画を見る 
PAGE TOP