問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に\\
垂直な直線である。放物線C_1:y=x^2上の点P(a,a^2)(ただし、a≠0とする)\\
における法線の方程式はy=\boxed{\ \ ア\ \ }\ である。\\
また、実数p,qに対し、放物線C_2:y=-(x-p)^2+q上のある点における\\
法線が、放物線C_1上の点(1,1)における法線と一致するとき、pとqについて\\
q=\boxed{\ \ イ\ \ }\ という関係式が成り立つ。\\
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に\\
垂直な直線である。放物線C_1:y=x^2上の点P(a,a^2)(ただし、a≠0とする)\\
における法線の方程式はy=\boxed{\ \ ア\ \ }\ である。\\
また、実数p,qに対し、放物線C_2:y=-(x-p)^2+q上のある点における\\
法線が、放物線C_1上の点(1,1)における法線と一致するとき、pとqについて\\
q=\boxed{\ \ イ\ \ }\ という関係式が成り立つ。\\
\end{eqnarray}
2022慶應義塾大学商学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に\\
垂直な直線である。放物線C_1:y=x^2上の点P(a,a^2)(ただし、a≠0とする)\\
における法線の方程式はy=\boxed{\ \ ア\ \ }\ である。\\
また、実数p,qに対し、放物線C_2:y=-(x-p)^2+q上のある点における\\
法線が、放物線C_1上の点(1,1)における法線と一致するとき、pとqについて\\
q=\boxed{\ \ イ\ \ }\ という関係式が成り立つ。\\
\end{eqnarray}
2022慶應義塾大学商学部過去問
\begin{eqnarray}
{\Large\boxed{1}}\ (3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に\\
垂直な直線である。放物線C_1:y=x^2上の点P(a,a^2)(ただし、a≠0とする)\\
における法線の方程式はy=\boxed{\ \ ア\ \ }\ である。\\
また、実数p,qに対し、放物線C_2:y=-(x-p)^2+q上のある点における\\
法線が、放物線C_1上の点(1,1)における法線と一致するとき、pとqについて\\
q=\boxed{\ \ イ\ \ }\ という関係式が成り立つ。\\
\end{eqnarray}
2022慶應義塾大学商学部過去問
投稿日:2022.06.28