ε N論法 #6 1-n^2(n→∞) - 質問解決D.B.(データベース)

ε N論法 #6 1-n^2(n→∞)

問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}(1-n^2)=-\infty$
$ε N$論法で証明せよ.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}(1-n^2)=-\infty$
$ε N$論法で証明せよ.
投稿日:2021.06.14

<関連動画>

福田のわかった数学〜高校2年生051〜領域(6)領域と最大最小(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(6) 領域と最大最小(2)
$x \geqq 0, y \geqq 0, 3x+y \leqq 9, x+2y \leqq 8$
のとき、
$ax+y$の最大値を$a$で表せ。
この動画を見る 

大学入試問題#825「まあまあ良問」 #茨城大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-7}^{1}(2-x) \sqrt[ 3 ]{ 1-x }\ dx$

出典:2022年茨城大学
この動画を見る 

【数Ⅱ】中高一貫校問題集3(数式・関数編)376:図形と式:円と直線:定点通過の解法! x²+y²-2mx-2m-2=0がmに関係なく通る点は?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
この動画を見る 

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} |e^x-e| dx$

出典:2014年奈良教育大学
この動画を見る 

福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
この動画を見る 
PAGE TOP