【高校数学】 数Ⅱ-76 軌跡と方程式② - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-76 軌跡と方程式②

問題文全文(内容文):
◎次の条件を満たす点Pの軌跡を求めよう。

①2点A(-2.0).B(2.0)からの距離の2乗の差$AP^2-BP^2$が24である点P

②2点A(-1.0),B(2、0)からの距離の比が1:2である点P
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす点Pの軌跡を求めよう。

①2点A(-2.0).B(2.0)からの距離の2乗の差$AP^2-BP^2$が24である点P

②2点A(-1.0),B(2、0)からの距離の比が1:2である点P
投稿日:2015.07.10

<関連動画>

指数連立方程式 (高校数学)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数
指導講師: 数学を数楽に
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ $xyz空間$において、$直方体ABCD-EFGH$が$z \geqq x^2+y^2$
$(0 \leqq z \leqq 1)$を満たす立体の周辺および内部に存在する。この
直方体の$面ABCD,EFGH$は$xy平面$に平行であり、$頂点A,B,C,D$
は$平面z=1$上に、$頂点E,F,G,H$は$曲面z=x^2+y^2$上に存在する。

$(1)$$直方体ABCD-EFGH$の$面ABCD$および$EFGH$が$1辺$の$長さa$
の正方形のとき、正の実数である$a$の取り得る値の範囲は
$0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}$であり、この直方体の体積は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2$
である。
$(2)$$直方体ABCD-EFGH$の$面ABFE$および$DCGH$が$1辺$の$長さb$
の正方形のとき、正の実数である$b$の取り得る値の範囲は
$0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}$であり、この直方体の体積は
$b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}$である。

$(3)$$直方体ABCD-EFGH$の全ての面が$1辺$の$長さc$の正方形のとき、すなわち
$直方体ABCD-EFGH$が立方体のとき、正の実数である$c$の値は
$\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}$であり、$立方体ABCD-EFGH$の体積は
$\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}$である。
この動画を見る 

【高校数学】 数Ⅱ-89 一般角の三角関数

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、

$\sin \theta=$①____

$\cos \theta=$②____

$\tan \theta=$③____

また、単位円について同様に考えると、

$\sin \theta=$④____

$\cos \theta=$⑤____

ちなみに、三角関数の値の範囲は、

⑥____$\leqq \sin \theta \leqq$____

⑦____$\leqq \cos \theta \leqq$____

$\tan \theta=$恥数全体。
※図は動画内参照
この動画を見る 

【数学Ⅱ/微分】接線の方程式①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線

(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
この動画を見る 

大学入試問題#93 昭和大学医学部(2016) 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$log_xy=log_yx=-log_3(x+y)$をみたす実数$x,y$を求めよ。

出典:2016年昭和大学医学部 入試問題
この動画を見る 
PAGE TOP