大学入試問題#714「The basic integral problem」 青山学院大(2021) 定積分 - 質問解決D.B.(データベース)

大学入試問題#714「The basic integral problem」 青山学院大(2021) 定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{5} \displaystyle \frac{dx}{(x+3)\sqrt{ x+1 }}$

出典:2021年青山学院大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{5} \displaystyle \frac{dx}{(x+3)\sqrt{ x+1 }}$

出典:2021年青山学院大学 入試問題
投稿日:2024.01.24

<関連動画>

福田の数学〜慶應義塾大学薬学部2025第1問(1)〜絶対不等式と2次関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$a$を実数とする。

$x$の$2$次関数$f(x)=x^2-ax+a+2$は、

すべての実数$x$に対して$f(x)\geqq 0$を満たす。

(i)$a$の値の範囲は$\boxed{ア}$である。

(ii)$-2\leqq x\leqq 3$において、$f(x)$の最大値を$m$,

最大値を$M$とおく。

$m$が最大となるのは$a=\boxed{イ}$のときであり、

このとき$m=\boxed{ウ},M=\boxed{エ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

6次式の最大値と最小値!?【数学 入試問題】【自治医科大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。

自治医科大過去問
この動画を見る 

大学入試問題#415「解法は何通りかありそう・・・」 兵庫県立大学2022 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\displaystyle \frac{\sin3x}{\sin2x})^2 dx$

出典:2022年兵庫県立大学 入試問題
この動画を見る 

福田の数学〜この関数にピンときたら大正解〜北里大学2023年医学部第2問〜関数の増減と方程式の実数解の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x)=2^x-x^2$について考える。必要ならば、$0.6 \lt \log 2 \lt 0.7,-0.4 \lt \log(\log2) \lt -0.3$を用いてよい。
(1)$f(x)$は区間 $x \geqq 4$で増加することを示せ。
(2)方程式$f'(x)=0$の異なる実数解の個数を求めよ。
(3)方程式$f(x)=0$の異なる実数解の個数を求めよ。
(4)方程式$f(x)=0$の実数解のうち、最小のものを$p$とする。
この時、曲線$y=f(x)$の$x \leq 0$の部分、放物線$y=-x^2+\dfrac{2}{\log2}x$、および2つの直線$x=p,x=0$で囲まれた図形の面積を求めよ。

2023北里大学医過去問
この動画を見る 

福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。

2023東北大学文系過去問
この動画を見る 
PAGE TOP