#宮崎大学 2023年 #定積分 #Shorts - 質問解決D.B.(データベース)

#宮崎大学 2023年 #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{-2}^{0} log(x+3) dx$

出典:2023年宮崎大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{0} log(x+3) dx$

出典:2023年宮崎大学
投稿日:2024.03.14

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第3問〜平均と分散の変換

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$(1)ある学校で100点満点のテストを行うことになった。
まず10人の教員で解いてみたところ、その得点のヒストグラムは
右図(※動画参照)のようになった。ただし、得点は整数値とする。
このデータの平均値は$\boxed{\ \ ア\ \ }$点、中央値は$\boxed{\ \ イ\ \ }$点、
最頻値は$\boxed{\ \ ウ\ \ }$点、分散は$\boxed{\ \ エ\ \ }$点である。
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均
値が$\overline{x}_A$、分散が$s_A^2$、B組の得点の平均値が$\overline{x}_B$、分散が$s_B^2$となった。
ただし、$\overline{x}_A,\overline{x}_B,s_A^2,s_B^2$はいずれも0ではなかった。このとき、B組の各生徒
の得点$x$に対して、正の実数aと実数bを用いて$y=ax+b$と変換し、
yの平均値と分散をA組の平均値と分散に一致させるためには、
$a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }$とすればよい。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(7)〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (7)座標空間内に4点$A(0,-2,2),\ B(0,2,2),\ C(2,0,-2),\ D(-2,0,-2)$がある。
この4点を頂点とする四面体ABCDの体積は$\boxed{シ}$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第6問〜複雑な反復試行の確率と確率の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル$\overrightarrow{ v_k }$を
$\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})$
と定める。投げたとき表と裏がどちらも$\frac{1}{2}$の確率で出るコインをN回投げて、
座標平面上に点$X_0,X_1,X_2,\ldots,X_N$を以下の規則$(\textrm{i}),(\textrm{ii})$に従って定める。
$(\textrm{i})X_0$はOにある。
$(\textrm{ii})n$を1以上N以下の整数とする。$X_{n-1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }$
により$X_n$を定める。ただし、kは1回目からn回目までの
コイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表が
ちょうどr回出る確率を$p_r$とおく。ただし$0 \leqq r \leqq 200$である。$p_r$を求めよ。
また$p_r$が最大となるrの値を求めよ。

2022東京大学理系過去問
この動画を見る 

大学入試問題#341「部分積分の心を・・・」 立教大学 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (\sin\ x+x\ \cos\ x)log\ x\ dx$

出典:立教大学 入試問題
この動画を見る 

大学入試問題#779「コメントするなら普通の問題」 青山学院大学(2021) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ n^2+2n+16 }$ が整数となるような整数$n$をすべて求めよ

出典:2021年青山学院大学
この動画を見る 
PAGE TOP