【数Ⅲ】極限:無限等比級数で表された関数のグラフの問題 - 質問解決D.B.(データベース)

【数Ⅲ】極限:無限等比級数で表された関数のグラフの問題

問題文全文(内容文):
$f(x)=\sqrt{x}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{\sqrt{x}}{(1+\sqrt{x})^2}+… $

について$y=f(x)$のグラフを書け
チャプター:

00:05 問題紹介
00:32 解くためのポイント
01:44 解答解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt{x}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{\sqrt{x}}{(1+\sqrt{x})^2}+… $

について$y=f(x)$のグラフを書け
投稿日:2023.03.22

<関連動画>

極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \frac{x^2-4}{x-2}=$
この動画を見る 

福田の数学〜東北大学2025理系第3問〜4次関数が極大値をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a$を実数とし、関数$f(x)$を次のように定める。

$f(x)=x^4+\dfrac{4a}{3}x^3+(a+2)x^2$

このとき、以下の問いに答えよ。

(1)関数$f(x)$が極大値をもつような$a$のとり得る

値の範囲を求めよ。

(2)関数$f(x)$が$x=0$で極大値をもつような

$a$のとり得る値の範囲を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

練習問題1(数検準1級、教員採用試験 数列の極限)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_2=a_1=1$
$a_{n+2}=a_{n+1}+a_n$
$\displaystyle \lim_{ n \to \infty } \frac{loga_n}{n}$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

大学入試問題#378「どこまで記述すべきか・・・」 #奈良県立医科大学2015 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x-\sin(\tan\ x)}{x-\tan\ x}$

出典:2015年奈良県立医科大学 入試問題
この動画を見る 
PAGE TOP