【数Ⅲ】極限:無限等比級数で表された関数のグラフの問題 - 質問解決D.B.(データベース)

【数Ⅲ】極限:無限等比級数で表された関数のグラフの問題

問題文全文(内容文):
$f(x)=\sqrt{x}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{\sqrt{x}}{(1+\sqrt{x})^2}+… $

について$y=f(x)$のグラフを書け
チャプター:

00:05 問題紹介
00:32 解くためのポイント
01:44 解答解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt{x}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{\sqrt{x}}{(1+\sqrt{x})^2}+… $

について$y=f(x)$のグラフを書け
投稿日:2023.03.22

<関連動画>

古畑任三郎/刑事コロンボ問題

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \lim_{x\to \infty}\dfrac{[2x^2-x+3]}{x^2}$
この動画を見る 

【数Ⅲ】極限:無限総和にひっかかるな!!無限総和は罠がいっぱい

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...=$
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...=$
それぞれの無限総和はいくつ??
この動画を見る 

What is e?? The essence of e. Why (e^x)’=e^x

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$

(2)
$y=e^x$

(3)
動画内の図を見て求めよ

(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 

福田のわかった数学〜高校3年生理系012〜極限(12)極限関数

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\displaystyle\lim_{ n \to \infty }\displaystyle \frac{\tan^{2n+1} x-\tan^n x+1}{\tan^{2n+2} x+\tan^{2n} x+1}$

$(0 \leqq x \lt \displaystyle\frac{\pi}{2})$のグラフをかけ。
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ rを実数とする。次の条件によって定められる数列\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}を考える。\\
a_1=r,\hspace{15pt}a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
b_1=r,\hspace{15pt}b_{n+1}=\frac{b_n}{2}+\frac{7}{12}\hspace{15pt}(n=1,2,3,\ldots)\\
c_1=r,\hspace{15pt}c_{n+1}=\frac{c_n}{2}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
ただし、[x]はxを超えない最大の整数とする。以下の問いに答えよ。\\
(1)\lim_{n \to \infty}b_nと\lim_{n \to \infty}c_nを求めよ。\\
(2)b_n \leqq a_n \leqq c_n\hspace{15pt}(n=1,2,3,\ldots)を示せ。\\
(3)\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 
PAGE TOP