福田のわかった数学〜高校3年生理系051〜極限(51)連続と微分可能(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系051〜極限(51)連続と微分可能(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(2)\\
f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0   (x=0)
\end{array}\right.  
のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(2)\\
f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0   (x=0)
\end{array}\right.  
のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
投稿日:2021.07.20

<関連動画>

x^πを微分せよ

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$y=x^{\pi}$を微分せよ.
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(1)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)$実数$x$に関する方程式
$2\log(1-x)-\log(5-x)=\log 2$
を解くと$x=\boxed{ア}$である.

立教大学2022年理学部過去問
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年文系第2問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#不定積分・定積分#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数tの関数\hspace{210pt}\\
\\
F(t)=\int_0^1|x^2-t^2|dx\\
\\
について考える。\\
(1)0 \leqq t \leqq 1のとき、F(t)をtの整式として表せ。\\
(2)t \geqq 0 のとき、F(t)を最小にするtの値TとF(T)の値を求めよ。
\end{eqnarray}

2022東北大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(4)\\
f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.  のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る 

東工大 秀才栗崎 微分積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=\displaystyle \frac{1}{x}(x \gt 0)$と$y=- \displaystyle \frac{1}{x}(x \lt 0)$の接線および$x$軸を囲まれる三角形の面積の最大

出典:1975年東京工業大学 過去問
この動画を見る 
PAGE TOP