福田のおもしろ数学422〜10変数の不定方程式の解の個数 - 質問解決D.B.(データベース)

福田のおもしろ数学422〜10変数の不定方程式の解の個数

問題文全文(内容文):

$a_i (i=1,2,\cdots ,10)$はすべて整数であり、

$ \vert a_1 \vert \leqq 1$かつ

${a_1}^2+{a_2}^2+\cdots + {a_{10}}^2 $

$\quad \quad -a_1a_2-a_2a_3-\cdots a_{10}a_1=2$

を満たしている。

このような$(a_1,a_2,a_3,\cdots a_{10})$は何組あるか?
   
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a_i (i=1,2,\cdots ,10)$はすべて整数であり、

$ \vert a_1 \vert \leqq 1$かつ

${a_1}^2+{a_2}^2+\cdots + {a_{10}}^2 $

$\quad \quad -a_1a_2-a_2a_3-\cdots a_{10}a_1=2$

を満たしている。

このような$(a_1,a_2,a_3,\cdots a_{10})$は何組あるか?
   
投稿日:2025.02.27

<関連動画>

チェバの定理使わずに解ける? 香川誠陵 2022入試問題解説23問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
チェバの定理は使わない
AF:FCを求めよ
*図は動画内参照

2022香川誠陵高等学校
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第1問(2)〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角形の辺の比(内分・外分・二等分線)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
 以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。

2024共通テスト過去問
この動画を見る 

福田のおもしろ数学433〜四面体に関する計量問題

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

四面体$ABCD$において

$\angle ACB=45°$

$AD+BC+\dfrac{AC}{\sqrt2}=3$

体積$\dfrac{1}{6}$とする。

このとき$CD$を求めよ。

図は動画内参照
   
この動画を見る 

福田のおもしろ数学310〜累乗で表された数の大小比較

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$\left( \left( 3 \right)^3 \right)^4,\left( \left( 3 \right)^4 \right)^3,\left( \left( 3 \right)^4\right)^4,\left( \left( 4\right)^3 \right)^3,\left( \left( 4 \right)^3 \right)^4を昇順に直してください。ただし、a^{ b^c}=a^{ (b^c)}とする。$$
この動画を見る 

福田のおもしろ数学217〜ルートの中の巨大な数の分数を計算しよう

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{\dfrac{1111111088888889}{123456787654321}}$を計算して下さい
この動画を見る 
PAGE TOP